Closing Tues: HW 10.1
Closing Thurs: HW 10.2
Exam 1 will be returned Tues

Entry Task (directly from HW)
Consider $P(t)=33 t+6 t^{2}-t^{3}$.
For what value of t is $P(t)$ increasing?
(You'll need a calculator to get some decimals). Also do the full $1^{\text {st }}$ deriv. number line analysis that we did in lecture on Friday.

10.2 Concavity

Consider the given $y=f(x)$ graph (same graph from last lecture). Draw the tangent line at each point. Is the tangent line above or below the curve near that point?

Terminology:

If $f^{\prime \prime}(x)$ is positive at $x=a$, then $f(x)$ is concave up at $x=a$.
This means the tangent slopes are increasing near $x=a$ and the tangent line is below the graph at $x=a$.

If $f^{\prime \prime}(x)$ is negative at $x=a$, then $f(x)$ is concave down at $x=a$.
This means the tangent slopes are decreasing near $x=a$ and the tangent line is above the graph at $x=a$.

If $f^{\prime \prime}(x)=0$ at $x=a$, then we say $x=a$ is a possible point of inflection.

A point of inflection is any point where the concavity changes.

Example:

Let $f(x)=\frac{1}{2} x^{4}-3 x^{2}+5 x+1$
Find all intervals when $f(x)$ is concave up and find all inflection points.

Summary of $1^{\text {st }}$ and $2^{\text {nd }}$ deriv. facts

$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$
horiz. tangent	zero	
increasing	positive	
decreasing	negative	
possible inflection	hor. tangent	zero
concave up	increasing	positive
concave down	decreasing	negative

$1^{\text {st }}$ Deriv Analysis:(to find critical points, increasing, decreasing, local max/min, h.p.o.i)

Step 1: Critical Points
Find $f^{\prime}(x)$ and solve $f^{\prime}(x)=0$.
Step 2: Draw number line. Between critical points, pick values of x and plug into $f^{\prime}(x)$ to see if it is positive or negative.

Step 3: Make appropriate conclusions.
$\mathbf{2 t}^{\text {st }}$ Deriv Analysis: (to find inflection points, concave up/down)

Step 1: Possible Inflection Points
Find $f^{\prime \prime}(x)$ and solve $f^{\prime \prime}(x)=0$.
Step 2: Draw number line. Between possible infection points, pick values of x and plug into $f^{\prime \prime}(x)$ to see if it is positive or negative.

Step 3: Make appropriate conclusions.

Example:

Let $g(x)=x^{3}$.
Find all local optima and points of inflection, then sketch the graph.

Example: Let $T C(q)=5000 q^{2}+125000$ dollars for producing q things.

Recall: Overall average cost per item is given by

$$
A C(q)=\frac{T C(q)}{q}=\frac{5000 q^{2}+125000}{q}
$$

Analyze AC(q).
(What does it look like?, what are relative max/min? etc....)

